Chipaque Formation

From Wikipedia, the free encyclopedia
Chipaque Formation
Stratigraphic range: Cenomanian-Turonian
~97–90 Ma
TypeGeological formation
Unit ofVilleta Group
UnderliesGuadalupe Gp
 
OverliesUne Formation
Thicknessup to 1,700 metres (5,580 ft)
Lithology
Primary
OtherSandstone, limestone, siltstone
Location
Coordinates4°27′07″N 74°03′20″W / 4.45194°N 74.05556°W / 4.45194; -74.05556Coordinates: 4°27′07″N 74°03′20″W / 4.45194°N 74.05556°W / 4.45194; -74.05556
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Type section
Named forChipaque
Named by
LocationChipaque
Year defined1957
Coordinates4°27′07″N 74°03′20″W / 4.45194°N 74.05556°W / 4.45194; -74.05556
RegionCundinamarca, Boyacá
Country Colombia
Thickness at type section1,027 metres (3,370 ft)
Blakey 090Ma - COL.jpg
Paleogeography of Northern South America
90 Ma, by Ron Blakey

The Chipaque Formation (Spanish: Formación Chipaque, K2cp, Kc) is a geological formation of the Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The formation is also described as Gachetá Formation, named after Gachetá, in the area of the Llanos foothills of the Eastern Ranges. The predominantly formation dates to the Late Cretaceous period; Cenomanian-Turonian epochs and has a maximum thickness of 1,700 metres (5,600 ft). The formation, rich in TOC, is an important oil and gas generating unit for the giant oilfields and of the Eastern Ranges as well as in the Llanos Orientales.

Etymology[]

The formation was named in 1931 as group and as formation in 1957 by after Chipaque, Cundinamarca.[1]

Description[]

Lithologies[]

The Chipaque Formation with a maximum thickness of 1,700 metres (5,600 ft), is characterised by a sequence of pyritic , limestones and siltstones, with sandstone banks intercalated in the formation.[2] The Chipaque Formation contains a high density of fauna.[1] The formation is rich in TOC and one of the principal source rocks for oil and gas generation in the foothills of the Eastern Ranges,[3] sourcing fields as , and many others.[4] Chipaque also sourced the oilfields of the Llanos Orientales.[5] In the Chitasugá-1 well, drilled between 1980 and 1981, from the sandstones of the Chipaque Formation half a million m³ of water were produced.[6] The sandstone beds are reservoir rocks for oil in the Eastern Ranges.[3]

Stratigraphy and depositional environment[]

The Chipaque Formation overlies the Une Formation and is overlain by the Guadalupe Group. The core of the Zipaquirá Anticline consists of the Chipaque Formation.[7] The age has been estimated to be Cenomanian-Turonian.[1] Stratigraphically, the formation is time equivalent with the Simijaca Formation.[8] The formation has been deposited in an to shallow marine platform setting.[9] The deposition is represented by a maximum flooding surface and anoxic conditions.[10]

Outcrops[]

Chipaque Formation is located in the Bogotá savanna
Chipaque Formation
Type locality of the Chipaque Formation to the south of the Bogotá savanna

The Chipaque Formation is apart from its type locality, found in the Eastern Hills of Bogotá, the Ocetá Páramo and many other locations in the Eastern Ranges. The anticlinals of the Río Blanco-Machetá, San José and Sopó-Sesquilé are composed of the Chipaque Formation.[1]

Regional correlations[]

Cretaceous stratigraphy of the central Colombian Eastern Ranges
Age Paleomap VMM Guaduas-Vélez W Emerald Belt Villeta anticlinal Chiquinquirá-
Arcabuco
Tunja-
Duitama
Altiplano Cundiboyacense El Cocuy
Maastrichtian Blakey 065Ma - COL.jpg eroded Guaduas
Guadalupe
Campanian
Oliní
Santonian -
Coniacian Oliní Conejo Chipaque
Loma Gorda undefined La Frontera
Turonian Blakey 090Ma - COL.jpg Hondita La Frontera
Cenomanian hiatus Simijaca
Pacho Fm. Hiló - Pacho Une
Albian Blakey 105Ma - COL.jpg Hiló Une
Capotes - -
Aptian Capotes Socotá - El Peñón Paja Fómeque
Paja Paja El Peñón Trincheras
La Naveta
Barremian Blakey 120Ma - COL.jpg
Hauterivian
Las Juntas
Rosablanca Ritoque
Valanginian Ritoque - Murca Rosablanca hiatus Macanal
Rosablanca
Berriasian Blakey 150Ma - COL.jpg Guavio
Arcabuco
Sources


Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events proximal Llanos distal Llanos Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
Blakey 000Ma - COL.jpg
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
Blakey Pleist - COL.jpg
Pleistocene volcanism
Andean orogeny 3
Glaciations
Soatá
Sabana

Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[11][12][13][14]
2.6 Pliocene
Blakey 020Ma - COL.jpg
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Honda [13][15]
13.5 Langhian Regional flooding hiatus Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [14][16]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [15][14]
17.3 Distal lacustrine-deltaic (C2) Seal
19 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
Blakey 035Ma - COL.jpg
Andean orogeny 1
Foredeep
Proximal fluvio-deltaic (C5) Reservoir [12][15]
25 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene Proximal deltaic-marine (C7) Reservoir [12][15][17]
32 Oligo-Eocene Usme onlap Marine-deltaic (C8) Seal
Source
[17]
35 Late Eocene
Blakey 050Ma - COL.jpg
Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [14][18]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
Blakey 065Ma - COL.jpg
Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[14][18]
55 Late Paleocene PETM
2000 ppm CO2
Bogotá
60 Early Paleocene SALMA Barco Guaduas Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [11][12][15][14][19]
65 Maastrichtian
Blakey 090Ma - COL.jpg
KT extinction Guadalupe Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [11][14]
72 Campanian End of rifting [14][20]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [11][14][21]
93 Cenomanian
Blakey 105Ma - COL.jpg
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [15][21]
113 Aptian
Blakey 120Ma - COL.jpg
Fómeque Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [12][14][22]
125 Barremian High biodiversity Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [11]
129 Hauterivian
Blakey 150Ma - COL.jpg
Rift 1 Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [11]
133 Valanginian
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [12][23]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Arcabuco
Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [15][24]
150 Early-Mid Jurassic
Blakey 170Ma - COL.jpg
Passive margin 2 La Quinta

Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[25]
201 Late Triassic
Blakey 200Ma - COL.jpg
[15]
235 Early Triassic
237 Ma orogenies reconstruction.jpg
Pangea hiatus "Paleozoic"
250 Permian
280 Ma plate tectonic reconstruction.png
300 Late Carboniferous
Laurasia 330Ma.jpg
Famatinian orogeny
()
[26]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)

()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
380 Ma plate tectonic reconstruction.png
Passive margin 1 Río Cachirí
(360-419)

()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[23][27][28][29][30]
390 Early Devonian
Gondwana 420 Ma.png
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian
425 Early Silurian hiatus
440 Late Ordovician
Middle Ordovician South Polar paleogeography - 460 Ma.png
Rich fauna in Bolivia
(450-490)

()
470 Early Ordovician First fossils
(>470±22)

()

()

()

Venado
(470-475)
[31][32][33]
488 Late Cambrian
ক্যাম্ব্রিয়ান৫০.png
Regional intrusions
(490-515)

()

()

(490-590)

()
[34][35]
515 Early Cambrian Cambrian explosion [33][36]
542 Ediacaran
Positions of ancient continents, 550 million years ago.jpg
Break-up of Rodinia pre-Quetame post-Parguaza
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [37][38]
600 Neoproterozoic
Rodinia reconstruction.jpg
Cariri Velhos orogeny
(600-1400)
pre-Guaviare [34]
800
Pannotia - 2.png
Snowball Earth [39]
1000 Mesoproterozoic
Paleoglobe NO 1260 mya.gif
Sunsás orogeny
(1000)

(1030-1100)
[40][41][42][43]
1300 pre-Ariarí
(1300-1400)

(1180-1550)
[44]
1400
Paleoglobe NO 1590 mya-vector-colors.svg
pre-Bucaramanga [45]
1600 Paleoproterozoic
(1500-1700)
pre-Garzón [46]
1800
2050ma.png

(1800)
[44][46]
1950 pre-Mitú [44]
2200 Columbia
2530 Archean
Kenorland.jpg
[44]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


Gallery[]

See also[]

Notes and references[]

Notes[]

  1. ^ based on Duarte et al. (2019)[47], García González et al. (2009),[48] and geological report of Villavicencio[49]
  2. ^ based on Duarte et al. (2019)[47] and the hydrocarbon potential evaluation performed by the UIS and in 2009[50]

References[]

  1. ^ a b c d Montoya Arenas & Reyes Torres, 2005, p.26
  2. ^ Lobo Guerrero, 1992, p.4
  3. ^ a b García González et al., 2009, p.49
  4. ^ Cortés et al., 2009, p.4
  5. ^ García González et al., 2009, p.58
  6. ^ Lobo Guerrero, 1993, p.20
  7. ^ García & Jiménez, 2016, p.24
  8. ^ Montoya Arenas & Reyes Torres, 2005, p.22
  9. ^ García González et al., 2009, p.209
  10. ^ Villamil, 2012, p.164
  11. ^ a b c d e f García González et al., 2009, p.27
  12. ^ a b c d e f García González et al., 2009, p.50
  13. ^ a b García González et al., 2009, p.85
  14. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  15. ^ a b c d e f g h Barrero et al., 2007, p.58
  16. ^ Plancha 111, 2001, p.29
  17. ^ a b Plancha 177, 2015, p.39
  18. ^ a b Plancha 111, 2001, p.26
  19. ^ Plancha 111, 2001, p.24
  20. ^ Plancha 111, 2001, p.23
  21. ^ a b Pulido & Gómez, 2001, p.32
  22. ^ Pulido & Gómez, 2001, p.30
  23. ^ a b Pulido & Gómez, 2001, pp.21-26
  24. ^ Pulido & Gómez, 2001, p.28
  25. ^ Correa Martínez et al., 2019, p.49
  26. ^ Plancha 303, 2002, p.27
  27. ^ Terraza et al., 2008, p.22
  28. ^ Plancha 229, 2015, pp.46-55
  29. ^ Plancha 303, 2002, p.26
  30. ^ Moreno Sánchez et al., 2009, p.53
  31. ^ Mantilla Figueroa et al., 2015, p.43
  32. ^ Manosalva Sánchez et al., 2017, p.84
  33. ^ a b Plancha 303, 2002, p.24
  34. ^ a b Mantilla Figueroa et al., 2015, p.42
  35. ^ Arango Mejía et al., 2012, p.25
  36. ^ Plancha 350, 2011, p.49
  37. ^ Pulido & Gómez, 2001, pp.17-21
  38. ^ Plancha 111, 2001, p.13
  39. ^ Plancha 303, 2002, p.23
  40. ^ Plancha 348, 2015, p.38
  41. ^ Planchas 367-414, 2003, p.35
  42. ^ Toro Toro et al., 2014, p.22
  43. ^ Plancha 303, 2002, p.21
  44. ^ a b c d Bonilla et al., 2016, p.19
  45. ^ Gómez Tapias et al., 2015, p.209
  46. ^ a b Bonilla et al., 2016, p.22
  47. ^ a b Duarte et al., 2019
  48. ^ García González et al., 2009
  49. ^ Pulido & Gómez, 2001
  50. ^ García González et al., 2009, p.60

Bibliography[]

  • García, Helbert, and Giovanny Jiménez. 2016. Structural analysis of the Zipaquirá Anticline (Eastern Cordillera, Colombia). , Universidad Nacional de Colombia 39. 21–32.
  • Schütz, Christian. 2012. Combined structural and Petroleum Systems Modeling in the Eastern Cordillera Basin, Colombia (MSc. thesis), 1–161. Rheinisch-Westfälische Technische Hochschule Aachen & .
  • Villamil, Tomas. 2012. Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, 161–216. Society for Sedimentary Geology (SEPM).
  • Cortés, Martín; Diego García; Germán Bayona, and Yolima Blanco. 2009. Timing of oil generation in the Eastern flank of the Eastern Cordillera of Colombia based on kinematic models; implications in the Llanos Foothills and Foreland charge, 1–8. (ACGGP).
  • García González, Mario; Ricardo Mier Umaña; Luis Enrique Cruz Guevara, and Mauricio Vásquez. 2009. Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, 1–219. Universidad Industrial de Santander.
  • Montoya Arenas, Diana María, and Germán Alfonso Reyes Torres. 2005. Geología de la Sabana de Bogotá, 1–104. INGEOMINAS.
  • Guerrero Uscátegui, Alberto Lobo. 1993. Informe sobre la Cuenca Petrolífera de la Sabana de Bogotá, Colombia, 1–29.
  • Guerrero Uscátegui, Alberto Lobo. 1992. Geología e Hidrogeología de Santafé de Bogotá y su Sabana, 1–20. Sociedad Colombiana de Ingenieros.

Reports[]

  • Reyes, Germán; Diana Montoya; Roberto Terraza; Jaime Fuquen; Marcela Mayorga; Tatiana Gaona, and Fernando Etayo. 2008. Geología del cinturón esmeraldífero oriental Planchas 210, 228, 229, 1−126. INGEOMINAS.
  • Acosta Garay, Jorge, and Carlos E. Ulloa Melo. 2001. Geología de la Plancha 227 - La Mesa - 1:100,000, 1–80. INGEOMINAS.
  • Terraza, Roberto; Diana Montoya; Germán Reyes; Giovanni Moreno; Jaime Fúquen; Eliana Torres Jaimes; Myriam López Cardona; Álvaro Nivia Guevara, and Fernando Etayo Serna. 2013. Geología de la Plancha 229 - Gachalá - 1:100,000, 1–296. Servicio Geológico Colombiano. Accessed 2018-06-01.
  • Patiño, Alejandro; Jaime Fuquen; Julián Ramos; Andrea Pedraza; Leonardo Ceballos; Lyda Pinzón; Yadira Jerónimo; Leidy Álvarez, and Andrea Torres. 2011. Cartografía geológica de la Plancha 247 - Cáqueza - 1:100,000, 1–100. INGEOMINAS. Accessed 2017-08-04.

Maps[]

External links[]

Retrieved from ""