Caballos Formation

From Wikipedia, the free encyclopedia
Caballos Formation
Stratigraphic range: Aptian-Albian
~120–100 Ma
TypeGeological formation
UnderliesHondita Formation
Overlies &
Thicknessup to 411 m (1,348 ft)
Lithology
PrimarySandstone, shale, siltstone
OtherLimestone, coal
Location
Coordinates3°49′18.9″N 75°21′22.4″W / 3.821917°N 75.356222°W / 3.821917; -75.356222Coordinates: 3°49′18.9″N 75°21′22.4″W / 3.821917°N 75.356222°W / 3.821917; -75.356222
RegionCaquetá, Huila, Putumayo & Tolima Departments
Country Colombia
Extent &
Central & Eastern Ranges, Andes
Type section
Named forCerro Caballos
Named byCorrigan
LocationOlaya Herrera
Year defined1967
Coordinates3°49′18.9″N 75°21′22.4″W / 3.821917°N 75.356222°W / 3.821917; -75.356222
Approximate paleocoordinates2°54′S 47°24′W / 2.9°S 47.4°W / -2.9; -47.4
RegionTolima
Country Colombia
Thickness at type section411 m (1,348 ft)
Blakey 105Ma - COL.jpg
Paleogeography of Northern South America
105 Ma, by Ron Blakey

The Caballos Formation (Spanish: Formación Caballos, KI) is a geological formation of the (VSM), , Central and Eastern Ranges of the Colombian Andes. The sandstone and shale formation dates to the Middle Cretaceous period; Aptian to Albian epochs and has a maximum thickness of 411 metres (1,348 ft).

Etymology[]

The formation was defined and named in 1967 by Corrigan after Cerro Caballos, to the west of Olaya Herrera, Tolima.[1]

Description[]

Lithologies[]

The Caballos Formation has a maximum thickness of 411 metres (1,348 ft) in the Quebrada Bambucá and is characterized by a lower sequence of fine to coarse sandstones, of lithic arenite, quartz arenite and feldspar arenite composition, a middle section of fossiliferous black shales and siltstones, intercalated by micritic limestones and coals and very fine sandstones. The upper part of the formation contains conglomerates and glauconitic sandstones.[1]

Stratigraphy and depositional environment[]

The Caballos Formation in some parts concordantly overlies the and in other parts rests unconformably on the and .[2] The formation is overlain by the Hondita Formation. The age has been estimated to be Aptian to Albian. Stratigraphically, the formation is time equivalent with the Une, , Simijaca, El Peñón, Capotes, , and Pacho Formations.[3] The formation has been deposited in a fluvial to estuarine and shallow marine environment.[4]

The Caballos Formation is a source, reservoir and seal rock in the ,[5][6] and a source and reservoir rock in the .[7][8] The and of the latter basin produce from Caballos reservoirs.

Fossil content[]

The formation has provided fossils of Heminautilus etheringtoni,[9] Araucarites sp., Brachyphyllum sp., Cladophlebis sp., and Weichselia sp.,[10] as well as many types of pollen.[11]

Outcrops[]

Caballos Formation is located in Tolima Department
Caballos Formation
Type locality of the Caballos Formation in Tolima

The Caballos Formation is apart from its type locality, found in Huila, Tolima and Putumayo Departments.

Regional correlations[]

Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events proximal Llanos distal Llanos Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
Blakey 000Ma - COL.jpg
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
Blakey Pleist - COL.jpg
Pleistocene volcanism
Andean orogeny 3
Glaciations
Soatá
Sabana

Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[12][13][14][15]
2.6 Pliocene
Blakey 020Ma - COL.jpg
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Honda [14][16]
13.5 Langhian Regional flooding hiatus Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [15][17]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [16][15]
17.3 Distal lacustrine-deltaic (C2) Seal
19 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
Blakey 035Ma - COL.jpg
Andean orogeny 1
Foredeep
Proximal fluvio-deltaic (C5) Reservoir [13][16]
25 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene Proximal deltaic-marine (C7) Reservoir [13][16][18]
32 Oligo-Eocene Usme onlap Marine-deltaic (C8) Seal
Source
[18]
35 Late Eocene
Blakey 050Ma - COL.jpg
Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [15][19]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
Blakey 065Ma - COL.jpg
Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[15][19]
55 Late Paleocene PETM
2000 ppm CO2
Bogotá
60 Early Paleocene SALMA Barco Guaduas Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [12][13][16][15][20]
65 Maastrichtian
Blakey 090Ma - COL.jpg
KT extinction Guadalupe Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [12][15]
72 Campanian End of rifting [15][21]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [12][15][22]
93 Cenomanian
Blakey 105Ma - COL.jpg
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [16][22]
113 Aptian
Blakey 120Ma - COL.jpg
Fómeque Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [13][15][23]
125 Barremian High biodiversity Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [12]
129 Hauterivian
Blakey 150Ma - COL.jpg
Rift 1 Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [12]
133 Valanginian
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [13][24]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Arcabuco
Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [16][25]
150 Early-Mid Jurassic
Blakey 170Ma - COL.jpg
Passive margin 2 La Quinta

Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[26]
201 Late Triassic
Blakey 200Ma - COL.jpg
[16]
235 Early Triassic
237 Ma orogenies reconstruction.jpg
Pangea hiatus "Paleozoic"
250 Permian
280 Ma plate tectonic reconstruction.png
300 Late Carboniferous
Laurasia 330Ma.jpg
Famatinian orogeny
()
[27]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)

()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
380 Ma plate tectonic reconstruction.png
Passive margin 1 Río Cachirí
(360-419)

()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[24][28][29][30][31]
390 Early Devonian
Gondwana 420 Ma.png
High biodiversity Floresta
(387-400)
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian
425 Early Silurian hiatus
440 Late Ordovician
Middle Ordovician South Polar paleogeography - 460 Ma.png
Rich fauna in Bolivia
(450-490)

()
470 Early Ordovician First fossils
(>470±22)

()

()

()

Venado
(470-475)
[32][33][34]
488 Late Cambrian
ক্যাম্ব্রিয়ান৫০.png
Regional intrusions
(490-515)

()

()

(490-590)

()
[35][36]
515 Early Cambrian Cambrian explosion [34][37]
542 Ediacaran
Positions of ancient continents, 550 million years ago.jpg
Break-up of Rodinia pre-Quetame post-Parguaza
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [38][39]
600 Neoproterozoic
Rodinia reconstruction.jpg
Cariri Velhos orogeny
(600-1400)
pre-Guaviare [35]
800
Pannotia - 2.png
Snowball Earth [40]
1000 Mesoproterozoic
Paleoglobe NO 1260 mya.gif
Sunsás orogeny
(1000)

(1030-1100)
[41][42][43][44]
1300 pre-Ariarí
(1300-1400)

(1180-1550)
[45]
1400
Paleoglobe NO 1590 mya-vector-colors.svg
pre-Bucaramanga [46]
1600 Paleoproterozoic
(1500-1700)
pre-Garzón [47]
1800
2050ma.png

(1800)
[45][47]
1950 pre-Mitú [45]
2200 Columbia
2530 Archean
Kenorland.jpg
[45]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


See also[]

Notes[]

  1. ^ based on Duarte et al. (2019)[48], García González et al. (2009),[49] and geological report of Villavicencio[50]
  2. ^ based on Duarte et al. (2019)[48] and the hydrocarbon potential evaluation performed by the UIS and in 2009[51]

References[]

  1. ^ a b Velandia et al., 2001, p.53
  2. ^ Velandia et al., 2001, p.34
  3. ^ Velandia et al., 2001, p.54
  4. ^ Villamil, 2012, p.166
  5. ^ ANH, 2007, p.84
  6. ^ García González et al., 2009, p.83
  7. ^ ANH, 2007, p.57
  8. ^ García González et al., 2009, p.16
  9. ^ Badouin et al., 2016, p.87
  10. ^ Monje et al., 2016, p.38
  11. ^ Los Mangos at Fossilworks.org
  12. ^ a b c d e f García González et al., 2009, p.27
  13. ^ a b c d e f García González et al., 2009, p.50
  14. ^ a b García González et al., 2009, p.85
  15. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  16. ^ a b c d e f g h Barrero et al., 2007, p.58
  17. ^ Plancha 111, 2001, p.29
  18. ^ a b Plancha 177, 2015, p.39
  19. ^ a b Plancha 111, 2001, p.26
  20. ^ Plancha 111, 2001, p.24
  21. ^ Plancha 111, 2001, p.23
  22. ^ a b Pulido & Gómez, 2001, p.32
  23. ^ Pulido & Gómez, 2001, p.30
  24. ^ a b Pulido & Gómez, 2001, pp.21-26
  25. ^ Pulido & Gómez, 2001, p.28
  26. ^ Correa Martínez et al., 2019, p.49
  27. ^ Plancha 303, 2002, p.27
  28. ^ Terraza et al., 2008, p.22
  29. ^ Plancha 229, 2015, pp.46-55
  30. ^ Plancha 303, 2002, p.26
  31. ^ Moreno Sánchez et al., 2009, p.53
  32. ^ Mantilla Figueroa et al., 2015, p.43
  33. ^ Manosalva Sánchez et al., 2017, p.84
  34. ^ a b Plancha 303, 2002, p.24
  35. ^ a b Mantilla Figueroa et al., 2015, p.42
  36. ^ Arango Mejía et al., 2012, p.25
  37. ^ Plancha 350, 2011, p.49
  38. ^ Pulido & Gómez, 2001, pp.17-21
  39. ^ Plancha 111, 2001, p.13
  40. ^ Plancha 303, 2002, p.23
  41. ^ Plancha 348, 2015, p.38
  42. ^ Planchas 367-414, 2003, p.35
  43. ^ Toro Toro et al., 2014, p.22
  44. ^ Plancha 303, 2002, p.21
  45. ^ a b c d Bonilla et al., 2016, p.19
  46. ^ Gómez Tapias et al., 2015, p.209
  47. ^ a b Bonilla et al., 2016, p.22
  48. ^ a b Duarte et al., 2019
  49. ^ García González et al., 2009
  50. ^ Pulido & Gómez, 2001
  51. ^ García González et al., 2009, p.60

Bibliography[]

  • Badouin, Cyril; Gérard Delanoy; Josep Antón Moreno Bedmar; Antoine Pictet; Jean Vermeulen; Gabriel Conte; Roland Gonnet; Patrick Boselli, and Marc Bonelli. 2016. Revision of the Early Cretaceous genera Heminautilus SPATH, 1927, and Josanautilus MARTÍNEZ & GRAUGES, 2006 (Nautilida, Cenoceratidae). Carnets Geologicás 16. 61–212. Accessed 2017-01-20.
  • Barrero, Dario; Andrés Pardo; Carlos A. Vargas, and Juan F. Martínez. 2007. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal, 1–92. .
  • García González, Mario; Ricardo Mier Umaña; Luis Enrique Cruz Guevara, and Mauricio Vásquez. 2009. Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, 1–219. Universidad Industrial de Santander.
  • Monje Durán, Camila; Camila Martínez; Ignacio Escapa, and Santiago Madriñán. 2016. Nuevos registros de helechos y coníferas del Cretácico Inferior en la cuenca del Valle Superior del Magdalena, Colombia. Boletín de Geología, Universidad Industrial de Santander 38. 29–42. Accessed 2017-03-31.
  • Núñez Tello, Alberto. 2003. Cartografía geológica de las zonas Andina Sur y Garzón-Quetame (Colombia) - Memoria explicativa de las planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyaco, 1–298. INGEOMINAS.
  • Velandia P., Francisco; Alberto Núñez T., and Germán Marquínez. 2001. Mapa Geológico del Departamento del Huila - 1:300,000 - Memoria explicativa, 1–152. INGEOMINAS.
  • Villamil, Tomas. 2012. Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, 161–216. Society for Sedimentary Geology (SEPM).

Maps[]

Retrieved from ""